503 research outputs found

    Brightness perception for musical instrument sounds: Relation to timbre dissimilarity and source-cause categories.

    Get PDF
    Timbre dissimilarity of orchestral sounds is well-known to be multidimensional, with attack time and spectral centroid representing its two most robust acoustical correlates. The centroid dimension is traditionally considered as reflecting timbral brightness. However, the question of whether multiple continuous acoustical and/or categorical cues influence brightness perception has not been addressed comprehensively. A triangulation approach was used to examine the dimensionality of timbral brightness, its robustness across different psychoacoustical contexts, and relation to perception of the sounds' source-cause. Listeners compared 14 acoustic instrument sounds in three distinct tasks that collected general dissimilarity, brightness dissimilarity, and direct multi-stimulus brightness ratings. Results confirmed that brightness is a robust unitary auditory dimension, with direct ratings recovering the centroid dimension of general dissimilarity. When a two-dimensional space of brightness dissimilarity was considered, its second dimension correlated with the attack-time dimension of general dissimilarity, which was interpreted as reflecting a potential infiltration of the latter into brightness dissimilarity. Dissimilarity data were further modeled using partial least-squares regression with audio descriptors as predictors. Adding predictors derived from instrument family and the type of resonator and excitation did not improve the model fit, indicating that brightness perception is underpinned primarily by acoustical rather than source-cause cues

    Listening in the mix: lead vocals robustly attract auditory attention in popular music

    Get PDF
    Listeners can attend to and track instruments or singing voices in complex musical mixtures, even though the acoustical energy of sounds from individual instruments may overlap in time and frequency. In popular music, lead vocals are often accompanied by sound mixtures from a variety of instruments, such as drums, bass, keyboards, and guitars. However, little is known about how the perceptual organization of such musical scenes is affected by selective attention, and which acoustic features play the most important role. To investigate these questions, we explored the role of auditory attention in a realistic musical scenario. We conducted three online experiments in which participants detected single cued instruments or voices in multi-track musical mixtures. Stimuli consisted of 2-s multi-track excerpts of popular music. In one condition, the target cue preceded the mixture, allowing listeners to selectively attend to the target. In another condition, the target was presented after the mixture, requiring a more “global” mode of listening. Performance differences between these two conditions were interpreted as effects of selective attention. In Experiment 1, results showed that detection performance was generally dependent on the target’s instrument category, but listeners were more accurate when the target was presented prior to the mixture rather than the opposite. Lead vocals appeared to be nearly unaffected by this change in presentation order and achieved the highest accuracy compared with the other instruments, which suggested a particular salience of vocal signals in musical mixtures. In Experiment 2, filtering was used to avoid potential spectral masking of target sounds. Although detection accuracy increased for all instruments, a similar pattern of results was observed regarding the instrument-specific differences between presentation orders. In Experiment 3, adjusting the sound level differences between the targets reduced the effect of presentation order, but did not affect the differences between instruments. While both acoustic manipulations facilitated the detection of targets, vocal signals remained particularly salient, which suggest that the manipulated features did not contribute to vocal salience. These findings demonstrate that lead vocals serve as robust attractor points of auditory attention regardless of the manipulation of low-level acoustical cues

    Non-intrusive speech quality prediction using modulation energies and LSTM-network

    Get PDF
    Many signal processing algorithms have been proposed to improve the quality of speech recorded in the presence of noise and reverberation. Perceptual measures, i.e., listening tests, are usually considered the most reliable way to evaluate the quality of speech processed by such algorithms but are costly and time-consuming. Consequently, speech enhancement algorithms are often evaluated using signal-based measures, which can be either intrusive or non-intrusive. As the computation of intrusive measures requires a reference signal, only non-intrusive measures can be used in applications for which the clean speech signal is not available. However, many existing non-intrusive measures correlate poorly with the perceived speech quality, particularly when applied over a wide range of algorithms or acoustic conditions. In this paper, we propose a novel non-intrusive measure of the quality of processed speech that combines modulation energy features and a recurrent neural network using long short-term memory cells. We collected a dataset of perceptually evaluated signals representing several acoustic conditions and algorithms and used this dataset to train and evaluate the proposed measure. Results show that the proposed measure yields higher correlation with perceptual speech quality than that of benchmark intrusive and non-intrusive measures when considering various categories of algorithms. Although the proposed measure is sensitive to mismatch between training and testing, results show that it is a useful approach to evaluate specific algorithms over a wide range of acoustic conditions and may, thus, become particularly useful for real-time selection of speech enhancement algorithm settings

    Performance of the AMS-02 Transition Radiation Detector

    Get PDF
    For cosmic particle spectroscopy on the International Space Station the AMS experiment will be equipped with a Transition Radiation Detector (TRD) to improve particle identification. The TRD has 20 layers of fleece radiator with Xe/CO2 proportional mode straw tube chambers. They are supported in a conically shaped octagon structure made of CFC-Al-honeycomb. For low power consumption VA analog multiplexers are used as front-end readout. A 20 layer prototype built from final design components has achieved proton rejections from 100 to 2000 at 90% electron efficiency for proton beam energies up to 250 GeV with cluster counting, likelihood and neural net selection algorithms.Comment: 11 pages, 25 figures, espcrc2.sty (elsevier 2-column

    Do Two Symmetry Breaking Transitions in Photosynthetic Light Harvesting Complexes Form One, Two or More Kibble Zurek Model Topological Defects?

    Get PDF
    Kibble and Zurek proposed that rapid symmetry breaking transitions in the hot, early universe could result in causally disconnected topological defects such as cosmic strings. This type of first order transition has analogues in certain second order transitions present in condensed matter such as liquid crystals, super fluids, and charge density waves in terms of flux tubes or vortices. Recently, we discovered that Rhodopseudomonas acidophilus photosynthetic light harvesting complex might have different types of coherent ground and excited states, suggesting that there are two different symmetry breaking transitions. The B 850 ground states comprise eight identical rings each containing 18 bacteriochlorophyll components, and each ring has undergone a Bose Einstein phase transition to a charge density wave that lowers the energy. The excited state coherence results from polariton formation from the non-crossing of bosons, here an extension of exciton theory. The result is short-lived quasi-particles with very low mass that can form an unusual BEC. We suggest the oriented, circular B 850 and enclosed singlet B 875 compounds create a new cavity structure with some attributes of a nano pillar. Since both the ground and excited states should contain solitons, we envisage three fast light pulse experiments could be able to map both the Kibble Zurek Model phase transitions and energy transfers as a function of light intensity and time in this complex at room temperature

    Differences in the epidemiology of out-of-hospital and in-hospital trauma deaths

    Get PDF
    BACKGROUND: Trauma is a leading cause of mortality. Holistic views of trauma systems consider injury as a public health problem that requires efforts in primary, secondary and tertiary prevention. However, the performance of trauma systems is commonly judged on the in-hospital mortality rate. Such a focus misses opportunities to consider all deaths within a population, to understand differences in in-hospital and out-of-hospital trauma deaths and to inform population-level injury prevention efforts. The aim of this study was to provide an epidemiological overview of out-of-hospital and in-hospital trauma deaths in a geographically-defined area over a 10-year period. METHODS: We performed a population-based review of out-of-hospital and in-hospital trauma deaths over the period of 01 July 2006 to 30 June 2016 in Victoria, Australia, using data from the National Coronial Information System and the Victorian State Trauma Registry. Temporal trends in population-based incidence rates were evaluated. RESULTS: Over the study period, there were 11,246 trauma deaths, of which 71% were out-of-hospital deaths. Out-of-hospital trauma deaths commonly resulted from intentional self-harm events (50%) and transport events (35%), while in-hospital trauma deaths commonly resulted from low falls (≤1 metre) (50%). The incidence of overall trauma deaths did not change over the study period (incidence rate ratio 0.998; 95%CI: 0.991, 1.004; P = 0.56). CONCLUSIONS: Out-of-hospital deaths accounted for most trauma deaths. Given the notable differences between out-of-hospital and in-hospital trauma deaths, monitoring of all trauma deaths is necessary to inform injury prevention activities and to reduce trauma mortality. The absence of a change in the incidence of both out-of-hospital and in-hospital trauma deaths demonstrates the need for enhanced activities across all aspects of injury prevention

    Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    Get PDF
    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be) and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table

    Formation of the ηc\eta_c in Two-Photon Collisions at LEP

    Full text link
    The two-photon width Γγγ\Gamma_{\gamma\gamma} of the ηc\eta_c meson has been measured with the L3 detector at LEP. The ηc\eta_c is studied in the decay modes π+ππ+π\pi^+\pi^-\pi^+\pi^-, π+π\pi^+\pi^-K+^+K^-, Ks0_s^0K±π^\pm\pi^\mp, K+^+Kπ0^-\pi^{0}, π+πη\pi^+\pi^-\eta, π+πη\pi^+\pi^-\eta', and ρ+ρ\rho^+\rho^- using an integrated luminosity of 140 pb1^{-1} at s91\sqrt{s} \simeq 91 GeV and of 52 pb1^{-1} at s183\sqrt{s} \simeq 183 GeV. The result is Γγγ(ηc)=6.9±1.7(stat.)±0.8(sys.)±2.0\Gamma_{\gamma\gamma}(\eta_c) = 6.9 \pm 1.7 (stat.) \pm 0.8 (sys.) \pm 2.0(BR) keV. The Q2Q^2 dependence of the ηc\eta_c cross section is studied for Q2<9Q^2 < 9 GeV2^{2}. It is found to be better described by a Vector Meson Dominance model form factor with a J-pole than with a ρ\rho-pole. In addition, a signal of 29±1129 \pm 11 events is observed at the χc0\chi_c0 mass. Upper limits for the two-photon widths of the χc0\chi_c0, χc2\chi_c2, and ηc\eta_c' are also given

    Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV

    Get PDF
    A search for charginos nearly mass-degenerate with the lightest supersymmetric particle is performed using the 176 pb^-1 of data collected at 189 GeV in 1998 with the L3 detector. Mass differences between the chargino and the lightest supersymmetric particle below 4 GeV are considered. The presence of a high transverse momentum photon is required to single out the signal from the photon-photon interaction background. No evidence for charginos is found and upper limits on the cross section for chargino pair production are set. For the first time, in the case of heavy scalar leptons, chargino mass limits are obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference
    corecore